

Contents

1. Introduction	2
2. Assay Database	2
3. Structure Database	5
4. Descriptor Toolkit	8
5. Model Toolkit	11
6. The virtual Nanomaterials Library	14
7. Data Deposit and Calculation Services	15
8. Search ViNAS-Pro databases	17
9. Case Study: Regular Machine Learning Modeling Process	19
10. Contact Us	
11. About	

1. Introduction

Virtual Nanomaterial Simulation Professional (ViNAS-Pro, <u>https://vinas-toolbox.com/</u>) is a data-driven nanoinformatics platform. It provides high-quality data, user-friendly modeling tools and endpoint predictions, supporting rational design of new nanomaterials (NMs).

ViNAS-Pro maintains two machine readable databases: the Structure database and the Assay database. The Structure database provides structural information for 13 types of NMs, while the Assay database offers data on the experimentally assessed properties and biological activities of these NMs across 25 different assays. The Descriptor toolkit provides users with modules for data visualization and preprocessing, ensuring the structure diversity of the training data in the machine learning (ML) modeling procedure. The Model toolkit includes two modules: NanoPredictor and AutoNanoML. The NanoPredictor module maintains pre-developed ML models, enabling users to predict specific endpoints for new NMs. The AutoNanoML module provides an interface that allows users to develop their own ML models for various prediction purposes. ViNAS-Pro virtual library provides data analysis, structure data, and endpoint predictions for virtual NMs. Moreover, ViNAS-Pro provides services for data deposit, nanostructure construction, and nanodescriptor calculation.

2. Assay Database

The navigation page of the assay database provides an interactive table that lists the available assays on ViNAS-Pro (**Figure 2.1**). Users can search for a specific assay using keywords and access individual assay records by clicking on entries in the interactive table of the navigation page. The assay record page provides detailed information about a specific assay on ViNAS-Pro. For example, a record for assay nine (NanoAID-9) is shown in **Figure 2.2**. This assay record page includes a figure displaying the activity distributions of NMs tested against NanoAID-9, and an interactive table containing the results of NMs associated with NanoAID-9. Users can download both the assay results and the associated NMs' nanodescriptor data as XLSX files from the assay record page. The endpoint definition, experimental protocol, and related literature are displayed on the assay record page. Furthermore, users can access a specific NM record page (**Figure 2.3**) by clicking on a particular NM within the interactive table on the assay record page.

VINAS 📫 Tutorial 🗸 Assay 🏽 Structure 🖺 Descriptor 🗸 🖵 Model 🗸 🍔 Library 🗸 < Service 🗸 🔍 Search 🔿 Sign In

ViNAS Assays

There are currently a total of 25 assays in VINAS.

Search for a specific assay using the search bar to the right.

Show 10 v	entries		Sear	:h: Using any keywords
NanoAID *	Name	Measurement 🕴	Description	Control
1	AChE Binding 1	Quenching of AChE intrinsic fluorescence	Steady state fluorescence spectra were measured using a Hitachi F-4500 spectrofluorometer. AChE solution concentration was 0.36 μ M in 0.1 mM PBS buffer solution. Intrinsic fluorescence of AChE was measured by addition of nanoparticles stock solutions of which the final concentration was 90.9 μ g/ml. AChE solutions were excited at 280 nm and emission wavelength was set from 300 to 400 nm. Scanning speed was 1200 nm/min. Excitation and emission sit was as to 10.0 and 5.0 nm, respectively. PMT voltage was set to 700 volt. Fluorescence intensities at 340 nm were used for calculating the fluorescence queching effect. All measurements were performed at room temperature (23°C). We transformed the fluorescence values with and without the nanoparticles were transformed according to the Stern-Volmer equation: $F_F = 1 + 8vq(Q)$, where F_{π} and F are the fluorescence intensities in the absence and presence of the quencher, and Ksv is the dynamic quenching constant.	Cell culture medium
2	AChE Binding 2	Inhibition of AChE activity (%)	The asay buffer was 100 mM PBS, PH=8.0. A stock solution of AChE (100 U/ml) in assay buffer was kept at 0°C. A 1:30 dilution was prepared immediately before starting the measurement. ATCh (10 mM) and DTMB (7 mM) were dissolved in asay buffer and kept at 0°C. Stock solution concentration of nanoparticles dissolved in PBS was 1mg/ml. Neostigmine brondle, a known competitive inhibitor of AChE, was used as positive control and the concentration of stock solution was 0.1 mM. Into a cuvette containing 880 µi of assay buffer, 50 µi of the DTMS solution, 10 µi of an inhibitor solution, and 10 µi of an AChE Solution (3.33 U/ml) were added and throoroghly mixed. After inclubation for 15 min at 25 °C, the reaction was inhibited by adding 50 µi of ATCh solution. The absorbance were monitored at 412 nm over 5 min. The inhibitor solution using the equation $ (%) = (1-v/v_s) \times 100\%$, where v_s and v are the rates in the absebce and presence of inhibitor.	Negative control: cell culture medium; Positiv control: Neostigmine bromide
3	Autophage	Autophage inducing ability (number of the green fluorescent puncta per cell)	Tested in triplicate. The LC3-GFP U87 repoter cells were seeded in confocal dishes and fixed with 4% paraformaldehyde. Laser scanning confocal microscopy was used to acquire fluorescent images of cells. To quantify cell autophagy induction, the number of bright punctuates (autophagosomes) was counted in at least 30 cells.	Negative control: cell culture medium; Positive control: Rapamycin
4	Cell Association	Cellular association in A549 cell (Mg, log2 transformed)	Tested in triplicate. For cell association studies, harvested A549 cells were plated onto 24 well plates at ~200000 cells/well and incubated overnight at 37°C to reach ~80% confluence. Nanoparticles were incubated with cells for 4 h at 37°C. Following inclubation, cells in each well were washed four times with sterile PBS supplemented with 0.133 g/l calcium chloride dihydrate and 0.1% bovine serum albumin to remove particles that were free in solution and/or not strongly associated with the cell sufface. Total cell association (y) was calculated using the following pseudopartition coefficient: y = mcell/(mwell × mcells). Where, mcell is the total atomic golf (or silver) content associated with cells, mwell is the total atomic gold (or silver) content in well (associated with cells and free in solution), and mcells is the total mass of magnesium per sample.	NaN
5	Cell Uptake in A549 Cells	Cellular uptake in A549 (1×10 ⁻¹¹ g Au cell ⁻¹)	Tested in triplicate. Nanoparticles (50 µg/ml) were incubated with A549 cells for 24 h. After washing cells three times with phosphate buffered saline, we detached the cells from flask by trypsin-EDTA solution. The cells were counted and then lysed overnight in aqua regia. ICP-MS was used to quantify the concentration of nanoparticles.	Cell culture medium
6	Cell Uptake in A549 Cells 2	Cellular uptake in A549 (1×10 ^e nm ² cell ¹)	Tested in triplicate. A549 cells were seeded in 24-well plates at a density of 100 000 cells/well. After 24 h, the cells were washed once with PBS, and the solutions of nanoparticles in cell culture medium $(2.5 \times 10^{14} \text{ mm}/m)$ were added. After incubation for 12 h, the samples were washed seven times with PBS to remove extra nanoparticles. Then, the cells were detached by trypsin–EDTA solution (0.25% trypsin, 1 mM EDTA) and counted. The detached cells were lysed for ICP-MS.	Cell culture medium
7	Cell Uptake In HEK293 Cells	Cellular uptake in HEK293 (1×10 ^{·11} g Au cell ^{·1})	Tested in triplicate. Nanoparticles (50 µg/ml) were incubated with HEK293 cells for 24 h. After washing cells three times with phosphate buffered saline, we detached the cells from flask by trypsin-EDTA solution. The cells were counted and then lysed overnight in aqua regia. ICP-MS was used to quantify the concentration of nanoparticles.	Cell culture medium
8	Cell Viability	Cell viability (200 µg/ml)	Tested in triplicate. THP-1 (human monocyte) cell lines were cultivated in RPMI 1640 with 10% heat-inactivated fetal bovine serum, 2 mM L-glutamine, 100 µg/ml penicillin and 100 U/ml streptomtcin and grown in a humidified incubator at 37°C. Cell differentiation into macrophages was triggered by adding Phorbol 12-myristate 13-acetate at a concentration of 50 ng/ml and incubating for 48 h.Differentiated cells were characterized by allowing them to adhere to the plastic well surface in 96 well plates. The nonadherent monocytes were removed, and the adherent macrophages were washed twice in RPMI 1640. Cells were treated with F-NWNT suspensions (50 and 200 µg/ml in complete culture medium. LPS was added to the cultures at a concentration of 100 ng/ml. After 24 h of incubation, a cell proliferation (WAT-1) assay was used to determine the cell viability.	Negative control: Cell culture medium; Positiv control: Lipopolysaccharide (LPS
9	logP	logP	Tested in triplicate. The experimental logP values of all the nanoparticles were determined using "shaking flask" method. Briefly, nanoparticles were mixed with octanol-saturated water and water-saturated octanol. The mixture was shaken for 24 h. Then, the mixture was kept still for 3 h to seperate the organic and water phases. The nanoparticles in both phases were quantitatively determined by ICP- MS. logP values were then calculated using the following equation: logP = log[Cnp(octanol)/Cnp(water)]. Where, Cnp(octanol) is the concentration of nanoparticles in octanol and Cnp(water) is the concentration of nanoparticles in water.	NaN
10	Metabolic Activity of CYP34A	Metabolic activity of CYP3A4 in the liver (%)	The CYP3A4 activity in the HLM-only group was defined as 100%, and that in the ketoconazole group was defined as 0%. The activity of CYP3A4 in functional CNT treated groups was calculated according to the following equation: CNT's effect on CYP3A4 activity = (peak area of NFP in ketoconazole group - peak area of NFP in CNT group)/ (peak area of NFP in ketoconazole group - peak area of NFP in HLM-only group).	Negative control: Huma liver microsomes (HLM) Positive control: ketoconazole
howing 1 to 1	0 of 25 entries		Previou	s 1 2 3 Ne

Figure 2.1 The navigation page of the Assay database

🛓 Download NanoAID-9 Assay Data 📗 🛓 Download NanoAID-9	Descriptor Data		D Back to Assay Lis
iNAS NanoAlD-9	Activity Oveview for	NanoAID-9	
Name: logP			
Description: Tested in triplicate. The experimental logP values of all the nanoparticles were determined using "shaking flask" method. Briefly, nanoparticles were mixed with octanol-saturated water and water-saturated octanol. The mixture was shaken for 24 h. Then, the mixture was kept still for 3 h to seperate the organic and water phases. The nanoparticles in both phases were quantitatively determined by ICP-MS. logP values were then calculated using the following equation: logP = log[Cnp(octanol)/Cnp(water)]. Where, Cnp(octanol) is the concentration of nanoparticles in octanol and Cnp(water) is the concentration of nanoparticles in water. Control: nan	25 20 15 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Nanomaterial Group Gold nanoparticles Palladium nanoparticles Palladium nanoparticles 2 3	
Typical Literature: ACS Nano 2020, 14, 1, 289-302 Ssay Results splaying 147 tested nanomaterials for VINAS NanoAID-9	Result		
Typical Literature: ACS Nano 2020, 14, 1, 289-302 SSAy Results splaying 147 tested nanomaterials for ViNAS NanoAID-9 tow 10 • entries	Result		Search:
Typical Literature: ACS Nano 2020, 14, 1, 289-302 ssay Results splaying 147 tested nanomaterials for VINAS NanoAID-9 how 10 - entries VID	Result	¢	Search: SD
Typical Literature: ACS Nano 2020, 14, 1, 289-302 ssay Results splaying 147 tested nanomaterials for VINAS NanoAID-9 iow 10 - entries VID	Result Result Result -0.66	0.7	Search: SD
Typical Literature: ACS Nano 2020, 14, 1, 289-302 Ssay Results Splaying 147 tested nanomaterials for VINAS NanoAID-9 ow 10 - entries VID INP001 INP002	Result Result Result -0.66 -0.37	0.7 0.4	Search: SD
Typical Literature: ACS Nano 2020, 14, 1, 289-302 Ssay Results splaying 147 tested nanomaterials for VINAS NanoAID-9 ow 10 - entries VID NP001 NP002 NP003	Result	¢ 0.7 0.4 0.2	Search: 5D
Typical Literature: ACS Nano 2020, 14, 1, 289-302	Result Result 0.66 -0.37 -0.32 0.03	0.7 0.4 0.2 0.1	Search: SD
Typical Literature: ACS Nano 2020, 14, 1, 289-302 ssay Results splaying 147 tested nanomaterials for VINAS NanoAID-9 ow 10 - entries VID NP001 NP002 NP003 NP004 NP005	Result Result •	0.7 0.4 0.2 0.1 0.1	Search: SD
Typical Literature: ACS Nano 2020, 14, 1, 289-302 Sasay Results splaying 147 tested nanomaterials for VINAS NanoAID-9 ow 10 - entries VID NP001 NP002 NP003 NP003 NP004 NP005 NP005 NP005	Result • Result • • •	0.7 0.4 0.2 0.1 0.1 0.2	Search: 5D
Typical Literature: ACS Nano 2020, 14, 1, 289-302 ssay Results splaying 147 tested nanomaterials for VINAS NanoAID-9 ww 10 entries vID	Result Result -0.66 -0.37 -0.32 0.03 1.07 2.09 -1.36	0.7 0.4 0.2 0.1 0.1 0.2 0.1	Search: 50
Typical Literature: ACS Nano 2020, 14, 1, 289-302 ssay Results splaying 147 tested nanomaterials for VINAS NanoAID-9 ww 10 ventries vID NP001 NP001 NP003 NP004 NP005 NP006 NP006 NP005 NP006 NP007 NP008	Result Result -0.66 -0.37 -0.32 0.03 1.07 2.09 -1.36 -0.86	0.7 0.4 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.2	Search: 50
Typical Literature: ACS Nano 2020, 14, 1, 289-302 Issay Results Isplaying 147 tested nanomaterials for VINAS NanoAID-9 how 10 • entries VID SNP001 SNP002 SNP003 SNP004 SNP005 SNP006 SNP007 SNP008 SNP009	Result Result 0.66 0.37 0.32 0.03 1.07 2.09 -1.36 0.86 1.19	0.7 0.4 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.2	Search: SD

Figure 2.2 The record page for assay 9 (NanoAID-9)

🕹 Download PDB File 🕹 I	Download Descriptor File	Add to Descriptor List			්ට Back	to Nanomater	rials Gro
NAS-ID: GNP001		Str	ucture for GNP001	Surfa	ace Chemistry for	GNP001	
Type: Gold nanoparticle Shape: Sphere Core: Gold Size: 6.2 Surfactant: - #Ligand1: 525 Reference: ACS Nano 202	20, 14, 1, 289-302			~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	
sted Assay Results							
ested Assay Results splaying 6 assay results for G	NP001. Click on ViNAS Na	anoAID to display information ab	out that specific assay.				
ested Assay Results playing 6 assay results for G ow 10 - entries	NP001. Click on ViNAS Na	anoAID to display information ab	out that specific assay.		Search:		
sted Assay Results playing 6 assay results for G ow 10 - entries NanoAID	NP001. Click on ViNAS Na	anoAID to display information ab	out that specific assay.	VID \$	Search:	•	SD
ested Assay Results splaying 6 assay results for G ow 10 - entries NanoAID	NP001. Click on ViNAS Na A Cell Uptake in A5	anoAID to display information ab Name	out that specific assay.	VID 0 259.21	Search:	¢ s 69.5	SD
ested Assay Results playing 6 assay results for G ow 10 - entries NanoAID	NP001. Click on ViNAS Na Cell Uptake in AS logP	anoAID to display information ab Name	out that specific assay.	VID 259.21 -0.66	Search:	¢ s 69.5 0.7	SD
ested Assay Results playing 6 assay results for G ow 10 ~ entries NanoAID	NP001. Click on VINAS Na Cell Uptake in AS logP Protein Adsorptio	anoAID to display information ab Name 549 Cells 2	out that specific assay.	VID 259.21 -0.66 4.2	Search: Result	 69.5 0.7 0.5 	SD
ested Assay Results splaying 6 assay results for G ow 10 v entries NanoAID	NP001. Click on ViNAS Na Cell Uptake in A5 logP Protein Adsorptio ROS in A549 Cell	anoAID to display information ab Name 549 Cells 2 on is 2	out that specific assay.	VID 259.21 -0.66 4.2 1.5	Search: Result	 69.5 0.7 0.5 0.17 	SD
ested Assay Results splaying 6 assay results for G now 10 - entries NanoAID 5 6	NP001. Click on VINAS Na Cell Uptake in AS logP Protein Adsorptio ROS in A549 Cell Zeta Potential in	anoAID to display information ab Name 549 Cells 2 on is 2 Water	out that specific assay.	VID 259.21 -0.66 4.2 1.5 -30.6	Search:	 69.5 0.7 0.5 0.17 1.41 	SD

3. Structure Database

The primary navigation page of the structure database provides interactive nanostructures that lists the available NM types on ViNAS-Pro (**Figure 3.1**). Users can access a secondary navigation page of a specific NM type (Figure 2.3) by clicking on a particular NM within the interactive structure on the primary navigation page. Its secondary navigation page provides an interactive table that lists the available NMs (**Figure 3.2**). Users can batch download the structure data as PDB file and nanodescriptor data as XLSX file for associated NM type on the secondary navigation page. Additionally, they can also search for a specific NM record using ViNAS-ID (VID) and access individual NM records by clicking on entries in the interactive table of the secondary navigation page. The NM record page provides detailed information about a specific NM on ViNAS-Pro. For example, **Figure 3.3** shows a record for a gold nanoparticle (GNP) named GNP001 on ViNAS-Pro. GNP001's record page provides its nanostructure figure

rendering in Van der Waals (VDW) format, along with basic structure information such as shape, size, core and ligand. Moreover, it includes an interactive table containing all the assay testing results associated with GNP001. The annotated nanostructure as a PDB file and nanodescriptor data as a XLSX file for GNP001 can also be downloaded from its record page. Furthermore, users can access a specific assay record page (**Figure 3.4**) by clicking on a particular assay within the interactive table on the NM record page.

VINAS	📫 Tutorial	Assay	Structure	Descriptor 🗸	P Model 🗸	S Library -	Service -	Q Search	→] s	Sign In		
	Gold Nanoparticles				Silver Nanoparticles					Platinum Nanoparticles		
	Palla	dium Nanopar	ticles			Fulle	renes			Carbon Nanoparticles		
	c	arbon Nanotub	les			Dend	rimers			DNA Origami		
	guou						Dendrimers					
		Metal Oxides				Quantu	um Dots			Cyclic Peptide Nanotubes		
	Metal Oxides				Quantum Dots					Cyclic Peptide Nanotubes		
	Tue Dim											
			materials									

Figure 3.1 The primary navigation page of the Structure database

Records for Gold nanoparticles										
Displaying 414 nanomaterial records for Gold nanoparticles. Click on ViNAS-ID to be taken to that nanomaterial record page.										
📩 PDB batch download										
Show 10 · entries				Se	earch:					
name									*	
GNP001										
GNP002										
GNP003										
GNP004										
GNP005										
GNP006										
GNP007										
GNP008										
GNP009										
GNP010										
Showing 1 to 10 of 414 entries	Previous	1	2	3	4	5		42	Next	

Figure 3.2 The secondary navigation page of the Structure database

Record for GNP001							
Lownload PDB File	Download Descriptor File 🛛 🚔 Add to Descript	or List			්ට ва	ck to Nanoma	terials Group
ViNAS-ID: GNP001 Type: Gold nanoparticle		Structure for GNP001		Surfa	ce Chemistry f	or GNP001	
Shape: Sphere Core: Gold Size: 6.2 Surfactant: -			900 900 900 900 900 900 900	~	~~~~	~0	
#Ligand1: 525 Reference: ACS Nano 20;	20, 14, 1, 289-302						
Tested Assay Results Displaying 6 assay results for G	NP001. Click on VINAS NanoAID to display infi	ormation about that specific assay.					
Show 10 v entries					Search:		
NanoAID	* Na	me	VID	0	Result	÷	SD 0
6	Cell Uptake in A549 Cells 2		GNP001	259.21		69.5	
9	logP		GNP001	-0.66		0.7	
12	Protein Adsorption		GNP001	4.2		0.5	
15	ROS in A549 Cells 2		GNP001	1.5		0.17	
16	Zeta Potential in Water		GNP001	-30.6		1.41	
18	Zeta Potential in Serum		GNP001	-26.9		1.1	
Showing 1 to 6 of 6 entries						Previous	1 Next

Figure 3.3 The record page for a specific NM (GNP001)

Record for ManoAlD-9			
🕹 Download NanoAID-9 Assay Data 🛛 🕹 Download NanoAID-9 [Descriptor Data		D Back to Assay List
ViNAS NanoAID-9 Name: logP Measurement: logP Description: Tested in triplicate. The experimental logP values of all the nanoparticles were determined using "shaking flask" method. Briefly, nanoparticles were mixed with octanol-saturated water and water-saturated octanol. The mixture was shaken for 24 h. Then, the mixture was kept still for 3 h to seperate the organic and water phases. The nanoparticles in both phases were quantitatively determined by ICP-MS. logP values	Activity Oveview for NanoAlD-	9 Nanomaterial Group Goid nanoparticles Platinum nanoparticles Paladium nanoparticles	
 Performance and the second seco	9 9 9 -2 -1 0 1 2 Result	3	
Assay Results Displaying 147 tested nanomaterials for VINAS NanoAID-9			
Assay Results Displaying 147 tested nanomaterials for VINAS NanoAID-9 Show 10 v entries			Search:
Assay Results Displaying 147 tested nanomaterials for VINAS NanoAID-9 Show 10 v entries VID	* Result	0	Search: SD +
Assay Results Displaying 147 tested nanomaterials for VINAS NanoAID-9 Show 10 v entries VID GNP001 GNP001	Result -0.66	0.7	Search: SD 0
Assay Results Displaying 147 tested nanomaterials for VINAS NanoAID-9 Show 10 v entries VID GNP001 GNP002 CMP002	Result	¢ 0.7 0.4	Search: SD •
Assay Results Displaying 147 tested nanomaterials for VINAS NanoAID-9 Show 10 v entries VID GNP001 GNP002 GNP003 COMPONA	 Result -0.66 -0.37 -0.32 0.02 	¢ 0.7 0.4 0.2	Search: SD •
Assay Results Displaying 147 tested nanomaterials for VINAS NanoAID-9 Show 10 ventries VID GNP001 GNP002 GNP003 GNP004 CANPOD5	 Result -0.66 -0.37 -0.32 0.03 1.07 	¢ 0.7 0.4 0.2 0.1	Search: SD •
Assay Results Displaying 147 tested nanomaterials for VINAS NanoAID-9 Show 10 v entries VID GNP001 GNP002 GNP003 GNP004 GNP005 CNP005 CNP005	 Result -0.66 -0.37 -0.32 0.03 1.07 2.00 	¢ 0.7 0.4 0.2 0.1 0.1	Search: SD •
Assay Results Displaying 147 tested nanomaterials for VINAS NanoAID-9 Show 10 ventries VID GNP001 GNP002 GNP003 GNP004 GNP005 GNP005 GNP006 CNP007	 Result -0.66 -0.37 -0.32 0.03 1.07 2.09 1.26 	¢ 0.7 0.4 0.2 0.1 0.1 0.1 0.2	Search: SD •
Assay Results Displaying 147 tested nanomaterials for VINAS NanoAID-9 Show 10 ventries VID GNP001 GNP002 GNP003 GNP004 GNP005 GNP005 GNP006 GNP007 CNP009	Result -0.66 -0.37 -0.32 0.03 1.07 2.09 -1.36 0.05	¢ 0.7 0.4 0.2 0.1 0.1 0.2 0.1 0.2	Search: SD •
Assay Results Displaying 147 tested nanomaterials for VINAS NanoAID-9 Show 10 entries VID GNP001 GNP002 GNP003 GNP004 GNP005 GNP005 GNP006 GNP007 GNP008 manage	Result -0.66 -0.37 -0.32 0.03 1.07 2.09 -1.36 -0.86	 0.7 0.4 0.2 0.1 0.2 0.1 0.2 0.1 	Search: SD •
Assay Results Displaying 147 tested nanomaterials for VINAS NanoAID-9 Show 10 entries VID GNP001 GNP002 GNP003 GNP004 GNP005 GNP005 GNP006 GNP007 GNP008 GNP009	Result -0.66 -0.37 -0.32 0.03 1.07 2.09 -1.36 -0.86 -1.19	 0.7 0.4 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 	Search: SD •

Figure 3.4 The record page for assay 9 (NanoAID-9)

4. Descriptor Toolkit

The Descriptor toolkit allows users to standardize nanodescriptor values using descriptor preprocessing method and analyze the associated NM space using principal component analysis (PCA). The Descriptor List module allows users to analyze the nanodescriptors of target NMs on ViNAS-Pro. Users can selectively add the nanodescriptors of interest of NMs to the Descriptor List interface from the nanostructure record page. For example, the record page for GNP001, provides an interactive function to add its nanodescriptors to the Descriptor List page, as shown in **Figure 4.1**. Subsequently, users can generate a customized descriptor list for specific NMs and submit it for further analysis, following the application of preprocessing functions such as StandardScaler or MinMaxScaler (**Figure 4.2**). The descriptor analysis results from Descriptor List approach are shown on the descriptor analysis page (**Figure 4.3**). Both two-dimensional (2D) and three-dimensional (3D) spaces of NMs are shown by applying PCA to reduce the

dimensionality of nanodescriptors. Each dot represents a NM and provides the NM's coordinates in the corresponding space. The standardized nanodescriptor dataset, along with the 2D and 3D NM space charts, are downloadable on the descriptor analysis page. The Descriptor Upload module allows users to upload their nanodescriptor data for analysis. For example, users can prepare their own nanodescriptor dataset for NMs in XLSX format. They can then submit the nanodescriptor set for analysis (**Figure 4.4**). Similar with Descriptor List module, the descriptor analysis results from Descriptor Upload approach are shown on the descriptor analysis page (**Figure 4.5**).

Figure 4.1 Adding nanodescriptors to the Descriptor List module on the GNP001 record page

The D have space the re	The Descriptor List module enables users to choose nanodescriptors of specific nanomaterials from the VINAS Structure record page for analysis. Users have access to two descriptor standardization methods: StandardScaler and MinMaxScaler . After submitting for descriptor analysis, the chemical space results, derived from the principal component analysis (PCA) of the chosen nanomaterials, are presented. Both the initial descriptor dataset and the results of the descriptor analysis can be downloaded for additional investigation.											
Desc	riptor list	:										
Go	d nanopar	ticles										
Ē	GNP001	GNP002		003 🔟 G	NP004	GNP005	GNP006	GNP0	07 <u>व</u> GN	IP008	GNP009	GNP010
Selec	t method f	or descripte	or preproce	ssing: Stan	ndardScaler	•						
1 s	ubmit for des	scriptor analy	sis									
		· · · · · · · · · · · · · · · · · · ·										
	SSSS_Rcal	SSSC_Rcal	SSSN_Rcal	SSSO_Rcal	SSSX_Rcal	SSSM_Rcal	SSCC_Rcal	SSCN_Rcal	SSCO_Rcal	SSCX_Rcal	SSCM_Rcal	SSNN_Rcal
GNP001	0.070829	4.456363	0.000000	0.000000	0	1.834781	19.127261	0.000000	0.021293	0	12.174292	0
GNP002	0.058116	4.023506	0.000000	0.000000	0	3.425900	19.244247	0.000000	0.000000	0	16.953668	0
GNP003	0.044717	4.611433	0.000000	0.000000	0	4.395765	21.489308	0.000000	0.024645	0	19.706627	0
GNP004	0.115164	4.291142	0.000000	0.000000	0	4.101996	20.969246	0.000000	0.035703	0	19.765377	0

Figure 4.2 Nanodescriptors analysis through the Descriptor List module

Figure 4.3 Nanodescriptors analysis results from the Descriptor List approach

Figure 4.4 Nanodescriptors analysis through the Descriptor Upload module

Figure 4.5 Nanodescriptors analysis results from the Descriptor Upload approach

5. Model Toolkit

The Model toolkit has two modules: NanoPredictor and AutoNanoML for new NMs prediction through ML approach. The NanoPredictor module maintains series of pre-developed ML models for different prediction tasks. For example, the NanoPredictor interface of the PLSR model developed for NMs with assay 19 (NanoAID-19) and assay 20 (NanoAID-20) data is shown in **Figure 5.1**. It provides the model description, model-related literature, and an interactive scatter plot chart displaying the correlations between experimental and predicted values of the NMs used in the modeling. The interface allows for downloading the model in pickle (pkl) format, as well as the modeling datasets, including the nanodescriptor data and the

assay data in XLSX format. Users can locally prepare a nanodescriptor dataset of new NMs in XLSX format and submit it for prediction through the interface (**red arrow in Figure 5.1**). The interface will employ the pre-developed model for prediction and offer downloadable prediction results for users to evaluate these new NMs (**purple arrow in Figure 5.1**). Moreover, a dropdown menu is added to the module for switching between NanoPredictor interfaces with different pre-developed models, making it easy for users to perform various endpoint prediction tasks (**red box in Figure 5.1**).

The AutoNanoML module allow users to develop ML models through ViNAS-Pro. Two ML algorithms, linear regression (LR) and partial least squares regression (PLSR), are introduced for modeling in the module. For example, the initial AutoNanoML interface for developing PLSR model is shown in **Figure 5.2**. The modeling process can be divided into three steps: (1) uploading the descriptor and endpoint datasets in XLSX format; (2) choosing a descriptor standardization method, either StandardScaler or MinMaxScaler; and (3) selecting a cross-validation method among 3-Fold, 5-Fold, 10-Fold, or Leave-One-Out to develop the optimal ML model. After submitting for modeling, the AutoNanoML interface will update with new sections for model analysis and prediction (Figure 5.3). Users can visualize the model results through an interactive scatter plot chart that illustrates the correlations between experimental and predicted values of the NMs involved in the modeling. In addition, they can analyze the nanodescriptors by exploring an interactive pie chart that illustrates the contributions of the top-k descriptors derived from the modeling outcomes. The interface displays the optimal number of components for developing the best PLSR model, which is obtained from the crossvalidation procedure. The R² and RMSE are two key metrics for users to assess the model performance. The model outcomes mentioned above are downloadable, including the model in pickle (pkl) format, the scatter plot chart data, and the descriptor contribution data. The updated interface also enables users to upload a nanodescriptor dataset of new NMs in XLSX format for prediction using their developed model (red arrow and purple arrow in Figure 5.3). The LR interface provides a workflow similar to PLSR, allowing users to develop LR models.

12

Figure 5.1 The NanoPredictor interface in the Model toolkit

Figure 5.2 The initial AutoNanoML interface in the Model toolkit

Figure 5.3 The updated AutoNanoML interface after ML modeling

6. The virtual Nanomaterials Library

To facilitate experimental research and reduce the time and cost associated with evaluating new NMs, a virtual NMs library is constructed and integrated into ViNAS-Pro, consisting of diverse nanostructures along with predictions of their properties, bioactivities, and toxicities. The library currently specializes in the development of virtual NMs for two material types, including platinum nanoparticles (PtNPs) and two-dimensional nanomaterials (2DNMs). For example, a total of 120 virtual PtNPs are developed based on the structural features of 12 experimentally synthesized PtNPs. The representative virtual PtNPs show structural diversity in size, types of surface ligands, and the number of surface ligands. The Library Analysis interface provides data analysis of virtual NMs in the library, categorized by different material types (Figure 6.1). The interface displays the size distribution chart, along with the 2D and 3D space charts of virtual NMs. It also provides an interactive table that lists the available virtual NMs in the library. The predictions for the virtual PtNPs using the pre-developed ML models are available and can be downloaded in batches through the Endpoint Profile interface (Figure 6.2). User can access detailed information and download relevant data for a specific virtual PtNP from the record page of the virtual NM by clicking on either the interactive table in the Library Analysis interface or the interactive table in the Endpoint Profile interface (Figure 6.1 and 6.2). The construction of virtual 2DNMs in the library is similar to that of the virtual PtNPs.

Select Material Type			
Data Analysis of virtual Platinum Nanoparticles in the Library			
L Based on the stockural information of protecting distance nanoparticles (PUID); now virtual PMP with develop interval parameters are populated. All virtual PUID vary is also and virtual relative virtual virtua			
	Record for v-PtNP-001	criptor File 🕹 Download Prediction Result	
	VINAS-ID: v-PtNP-001	Structure for v-PtNP-001	Surface Chemistry for v-PtNP-001
Exploratory Data Analysis of virtual PtNPs in the library			
Virtual PtNPs in the Library Crick an nanomaterials in the active table to view their basic information. In Rith developed W Rith black developed	Type: Patnum nanoparticle Shape: Sphere Core: Platnum size (nm): 2.29 #Ligand1: 86		
Show 10 v entries Search:		+	
LB-YID -PRUF-001 -PRUF-003 -PRUF-003 -PRUF-003 -PRUF-003 -PRUF-005 -PRUF-005 -PRUF-005 -PRUF-005 -PRUF-005 -PRUF-005 -PRUF-005 -PRUF-		J	
v-PtNP-010			
Showing 1 to 10 of 120 entries Previous 1 2 3 4 5 12 Next			

Figure 6.1 Exploring virtual nanomaterials through the Library Analysis interface

Serece Proterior 1	ſype ∽	Load virtual Nanomaterials Pre	dictions					
Introduction	to Models f	for Predicting virtua	I Platinum Nanoparticles					
Four endpoints, inc Nanoparticles (PtN	luding logP, Pro Ps). The pre-deve	eloped models of AID-9, AID-1	49 cells, and Zeta Potential in Water 12, AID-15, and AID-16 are used to pred	are used to evaluate the bioactivities and too lict these four endpoints for the library nanom	icities of Platinum saterials, respectively.			
For additional detail	ils on the four en	dpoints, refer to AID-9, AID-	12, AID-15, and AID-16 on the Assay	page.				
Endpoint Pro	ofile Results							
Lindpoint i i	onio recount							
Click on virtual nan	nomaterials in the	active table to view their pro	perty and bioactivity predictions.			Record for y-PtNP-001		
Prediction res.	ult batch download						relator Ela	
Show 10 × entri	ies			Saarch				
Lib-VID	logP	Protein Adsor	ption ROS in A54	9 Cells Zeta potentia	l in Water	VINAS-ID: v-PtNP-001	Structure for v-PtNP-001	Surface Chemistry for v-PtNP-001
v-PtNP-001	.0.82							
	0.01	5.5	1.25	-51.29	»	Type: Platinum nanoparticle	CONTRACTOR OF	
v-PtNP-002	-0.83	5.79	1.25	-51.29 -52.74	+	Type: Platinum nanoparticle Shape: Sphere	SVICE	mint
v-PtNP-002 v-PtNP-003	-0.83	5.79 7.41	1.25 1.25 1.77	-51.29 -52.74 -36.72		Type: Platinum nanoparticle Shape: Sphere Core: Platinum		-m
v-PtNP-002 v-PtNP-003 v-PtNP-004	-0.83 -1.54 -0.05	5.5 5.79 7.41 5.31	1.25 1.25 1.77 1.68	-51.29 -52.74 -36.72 -31.06		Type: Platinum nanoparticle Shape: Sphere Core: Platinum size (nm): 2.29 #Ligand1: 86	*	- julo
v-PtNP-002 v-PtNP-003 v-PtNP-004 v-PtNP-005	-0.83 -1.54 -0.05 0.04	5.5 5.79 7.41 5.31 3.87	1.25 1.25 1.77 1.68 2.33	-51.29 -52.74 -36.72 -31.06 -36.46		Type: Platinum nanoparticle Shape: Sphere Core: Platinum size (nm): 2.29 #Ligand1: 86		-j-nō
v-PtNP-002 v-PtNP-003 v-PtNP-004 v-PtNP-005 v-PtNP-006	-0.83 -1.54 -0.05 0.04 0.67	5.5 5.79 7.41 5.31 3.87 5.53	1.25 1.25 1.77 1.68 2.33 1.75	-51.29 -52.74 -36.72 -31.06 -36.46 -27.26		Type: Platinum nanoparticle Shape: Sphere Core: Platinum size (nm): 2.29 #Ligand1: 86		m
v-PtNP-002 v-PtNP-003 v-PtNP-004 v-PtNP-005 v-PtNP-006 v-PtNP-007	-0.83 -1.54 -0.05 0.04 0.67 -0.3	5.5 5.79 7.41 5.31 3.87 5.53 4.92	1.25 1.25 1.77 1.68 2.33 1.75 1.84	-51.29 -52.74 -36.72 -31.06 -36.46 -27.26 -22.48	F>	Type: Platinum nanoparticle Shape: Sphere Core: Platinum size (nm): 2.29 #Ligand1: 86	業	~~~~
v-PtNP-002 v-PtNP-003 v-PtNP-004 v-PtNP-005 v-PtNP-006 v-PtNP-007 v-PtNP-008	-0.83 -1.54 -0.05 0.04 0.67 -0.3 -1.15	5.79 7.41 5.31 3.87 5.53 4.92 5.93	1.25 1.25 1.77 1.68 2.33 1.75 1.84 2.2	-51.29 -52.74 -56.72 -31.06 -95.46 -27.26 -24.48 -33.69		Type: Platinum nangartice Shape: Sporr Core: Platinum size (nm): 2.29 #Ligand1: 86	***	-jno
v-PtNP-002 v-PtNP-003 v-PtNP-004 v-PtNP-005 v-PtNP-006 v-PtNP-007 v-PtNP-008 v-PtNP-009	-0.83 -1.54 -0.05 0.04 0.67 -0.3 -1.15 0.75	5.5 5.79 7.41 5.31 3.87 5.53 4.92 5.93 4.61	1.25 1.25 1.77 1.68 2.33 1.75 1.84 2.2 2.2 1.92	-51.29 -52.74 -36.72 -31.06 -36.46 -27.26 -24.48 -33.69 -30.35	>	Type: Platinum nanoparticle Shape: Space Core: Platinum size (nm): 2.29 #Ligand1: 86	***	
v-PtNP-002 v-PtNP-003 v-PtNP-004 v-PtNP-005 v-PtNP-006 v-PtNP-007 v-PtNP-008 v-PtNP-009 v-PtNP-009	-0.83 -1.54 -0.05 0.04 0.67 -0.3 -1.15 0.75 -1.1	5.79 5.79 7.41 5.31 3.87 5.53 4.92 5.93 4.61 5.94	1.25 1.25 1.77 1.68 2.33 1.75 1.84 2.2 1.92 1.92 2.34	-51.29 -52.74 -36.72 -31.06 -36.46 -27.26 -24.48 -33.69 -30.35 -36.68		Type: Platinum nanoparticle Shape: Sover Platinum size (nm): 2.29 #Ligand1: 86	***	- Juno

Figure 6.2 Exploring virtual nanomaterials through the Endpoint Profile interface

7. Data Deposit and Calculation Services

To facilitate data sharing within the nanoscience community, ViNAS-Pro provides a Data Deposit interface for users to deposit data into ViNAS-Pro databases (**Figure 7.1**). Depositors are encouraged to provide material information (e.g., material type and name), along with a corresponding reference (if available). They can then deposit nanostructure data in PDB format, nanodescriptor data, and assay results in CSV/XLSX format. After the in-house data cleaning

and validation, the uploaded data will be integrated into the ViNAS-Pro databases. Once the deposition is successful, depositors will receive a confirmation email.

ViNAS-Pro provides a nanostructure construction and nanodescriptor calculation service for new NMs (**Figure 7.2**). Users can request the service through the Calculation Service interface by providing basic information about the NM, including its name, shape, and size. It is preferable to include additional information, such as a corresponding reference, for the calculation service. When requesting nanodescriptor calculation, users are encouraged to provide corresponding nanostructures in PDB format. After the in-house calculation, users will receive a calculation result by email, which can be used for modeling and other nanoinformatics tasks.

For the two services mentioned above, users are required to provide an email address in the content/request details to receive the results of the service. This is an effective and secure method for protecting users' privacy. ViNAS-Pro ensures the protection of users' information and ownership of the data.

ViNA	S. 📫 Tutorial 🛛 🚨 Assay	🕸 Structure 🛛 🖥 Descriptor 🗸	🖵 Model 🗸	Service	← Q Search →) Sig	jn In
Da	ata Deposit			ViNA	Š.	
	Enter your email address			Pount		
. i	Material type (Tequired)			16662		
1	Title (*required)					
	Material name					
F	Reference (if any)					
ŀ	The preferred format is DOI				009)
- C	Content (*required)				ViNAS Database	
	Please detail the characteristics o including size, shape, composition to ligands or functional groups, a	f the deposited nanomaterial, n of the core, and modifications mong others.			/ † †	
	Choose Files No file chosen	Submit Data				
C A	Data files should be in PDB, CSV, or XLSX form Additionally, please ensure that the total file si	at. ze does not exceed 150 MB		Virtual nanostructure (PDB format)	Experimental result (CSV/XLSX format)	Nanodescriptor (CSV/XLSX format)

Figure 7.1 The Data Deposit interface

Figure 7.2 The Calculation Service interface

8. Search ViNAS-Pro databases

ViNAS-Pro allows users to search NM entries by different NM attributes, including ViNAS-ID (VID), NM type, shape, core type, and/or size (**Figure 8.1**). Users can focus on a single search criterion or combine multiple search criteria to find specific NM records. For example, users can search for NMs with 'Sphere' as the shape attribute, while keeping other search criteria unchanged. This results in a total of 583 NM entries that meet the search criteria, available for further browsing (**Figure 8.2**). Clicking on the ViNAS-ID in the results table will open the NM record page, displaying the NM's attributes, structure, and assay testing results. Moreover, a combination of search criteria, such as NM type and shape, can provide even more specific results. For example, users can search for NMs with 'Gold nanoparticle' as the NM type and 'Sphere' as the NM shape, while keeping other search criteria unchanged. This yields a total of 400 NM entries that meet the search criteria, available for further browsing (**Figure 8.3**). If all search criteria remain unchanged, the entire ViNAS-Pro database will be returned.

VINAS	📫 Tutorial	Assay	Structure 🕸	E Descriptor 🗸	🖵 Model 🗸	Elibrary -	Service -	Q Search	→) Sign In
Search Vi	NAS-Pro								
Fill out search	criteria below to	search the Vi	NAS-Pro database	for nanomaterials.					
Search for spe nanomaterial r returned.	cific nanomateri record page, whi	als using the \ ich displays at	/iNAS-ID (VID), N tributes, structure	anomaterial Type, S , and assay testing (hape, Core Type, results. If all sear	and/or Size. Clici ch criteria remair	king on the VINAS a unchanged, the	-ID in the result entire VINAS-Pro	ts table will open the o database will be
VINAS-ID-									
If the ViNAS-II	D is left blank, it	t defaults to se	lecting all nanoma	terials with any ViN	AS-ID.				
Enter ViNAS-I	D	(VID	example: GNP001	AgNP001 2DNM001)				
Nanomateria	l Type:								
All nanomater	rial types	~							
Shape:									
All shape type	es	~							
Core Type:									
All core types		~							
Size Kestrict	ion: left hey to get a	ine limiter une	hosted means no	e striction s					
	left box to set s	ize limits; unc	necked means no	restrictions.					
min size in nM		1009 M	iax size in nM:	10	110				
Search									

Figure 8.1 The Search interface

Search ViNAS-Pro											
Fill out search criteria below to search the VINAS-Pro database for nanomaterials.											
Search for specific nanomaterials using the VINAS-ID (VID), Nanomaterial Type, Shape, Core Type, and/or Size. Clicking on the VINAS-ID in the results table will open the nanomaterial record page, which displays attributes, structure, and assay testing results. If all search criteria remain unchanged, the entire VINAS-Pro database will be returned.											
VINAS-ID:											
If the VINAS-ID is left bl	lank, it defaults to selecting all	nanomaterials with a	any VINAS-ID.								
Enter VINAS-ID	(VID example:	GNP001 AgNP001 2D	NM001)								
Nanomaterial Type:											
All hanomaterial types	•										
Shape:	~ 🗕										
Sphere	· ·										
All core types	~										
Size Restriction:											
Check the left box to	o set size limits: unchecked me	eans no restrictions.									
Min size in nM:	1009 Max size in	nM:	1010								
Search ←											
Found 583 records matc Click the nanomaterial to	hing the search query. o view the record page.										
Show 10 🗸 entries					Search: Using any keywords						
VINAS-ID	Туре	🕴 Shape 🕴	Core 🕴	Size 🕴	Reference						
AgNP001	Silver nanoparticle	Sphere	Silver	15	Carbohyd. Polym. 2015, 130, 353-363.						
AgNP002	Silver nanoparticle	Sphere	Silver	15	Carbohyd. Polym. 2015, 130, 353-363.						
AgNP003	Silver nanoparticle	Sphere	Silver	10.2	Int. J. Nanomed. 2017, 12, 3193-3206.						
AgNP004	Silver nanoparticle	Sphere	Silver	10.2	Int. J. Nanomed. 2017, 12, 3193-3206.						
AgNP005	Silver nanoparticle	Sphere	Silver	10.2	Int. J. Nanomed. 2017, 12, 3193-3206.						
AgNP006	Silver nanoparticle	Sphere	Silver	9.9	Int. J. Nanomed. 2017, 12, 3193-3206.						
AgNP007	Silver nanoparticle	Sphere	Silver	40	Int. J. Nanomed. 2017, 12, 3193-3206.						
AgNP008	Silver nanoparticle	Sphere	Silver	40	ACS Nano 2014, 8, 2439-2455.						
AgNP009	Silver nanoparticle	Sphere	Silver	40	ACS Nano 2014, 8, 2439-2455.						
AgNP010	Silver nanoparticle	Sphere	Silver	40	ACS Nano 2014, 8, 2439-2455.						
Showing 1 to 10 of 583	entries				Previous 1 2 3 4 5 59 Next						

Figure 8.2 Search results for NMs with 'Sphere' as the shape attribute through the Search interface.

Searc	h Vil	AS-	Pro
-------	-------	-----	-----

Fill out search criteria below to search the VINAS-Pro database for nanomaterials.

Search for specific nanomaterials using the ViNAS-ID (VID), Nanomaterial Type, Shape, Core Type, and/or Size. Clicking on the ViNAS-ID in the results table will open the nanomaterial record page, which displays attributes, structure, and assay testing results. If all search criteria remain unchanged, the entire ViNAS-Pro database will be returned

recurred.	
VINAS-ID:	
If the VINAS-ID is left blank, it default	s to selecting all nanomaterials with any ViNAS-ID.
Enter VINAS-ID	(VID example: GNP001 AgNP001 2DNM001)
Nanomaterial Type:	
Gold nanoparticle ~	←
Shape:	
Sphere ~	←
Core Type:	
All core types ~	
Size Restriction:	
Check the left box to set size limit	s; unchecked means no restrictions.
Min size in nM:	009 Max size in nM: 1010
Search	

Search Results...

Found 400 records matching the search query.

Click the nanomaterial to view the record page.

Show 10 v entries					Search: Using any keywords
VINAS-ID	Туре	Shape	Core	Size	♦ Reference ♦
GNP001	Gold nanoparticle	Sphere	Gold	6.2	ACS Nano 2020, 14, 1, 289-302
GNP002	Gold nanoparticle	Sphere	Gold	6.2	ACS Nano 2020, 14, 1, 289-303
GNP003	Gold nanoparticle	Sphere	Gold	6.1	ACS Nano 2020, 14, 1, 289-304
GNP004	Gold nanoparticle	Sphere	Gold	6.5	ACS Nano 2020, 14, 1, 289-305
GNP005	Gold nanoparticle	Sphere	Gold	6.3	ACS Nano 2020, 14, 1, 289-306
GNP006	Gold nanoparticle	Sphere	Gold	6.6	ACS Nano 2020, 14, 1, 289-307
GNP007	Gold nanoparticle	Sphere	Gold	26.82	ACS Nano 2020, 14, 1, 289-308
GNP008	Gold nanoparticle	Sphere	Gold	27.02	ACS Nano 2020, 14, 1, 289-309
GNP009	Gold nanoparticle	Sphere	Gold	25.47	ACS Nano 2020, 14, 1, 289-310
GNP010	Gold nanoparticle	Sphere	Gold	27.78	ACS Nano 2020, 14, 1, 289-311
Showing 1 to 10 of 400 er	ntries				Previous 1 2 3 4 5 40 Next

Figure 8.3 Search results for NMs with 'Gold nanoparticle' as the NM type and 'Sphere' as the NM shape through the Search interface.

9. Case Study: Regular Machine Learning Modeling Process

9.1 Data preparation

As mentioned in the Introduction, ViNAS-Pro provides access to a total of 25 assay data, covering 13 NM types. Users can select nanodescriptor and assay data for specific nanomaterials (NMs) from the Assay database, based on a particular assay, for modeling purposes. In this case study, we will select assay nine (NanoAID-9), which is the logP assay, for ML modeling (**Figure 9.1.1**). After clicking on assay nine from the table of navigation page, users will be directed to the record page of NanoAID-9, where a general introduction of NanoAID-9 is shown. The assay

data and descriptor data of NMs for NanoAID-9 can be downloaded, and the two datasets of 123 gold nanoparticles (GNP) will be used for ML modeling (**Figure 9.1.2 and 9.1.3**).

ViNAS	Tutorial	Assay 🛞 Structure	🖹 Descriptor 🗸 🖵 Model 🗸 🗧 Library 🗸 🔩 Service 🗸 🔍 Search 🔿 Sign In					
ViNAS As	says							
There are curre	ently a total of 25	assays in VINAS.						
Search for a sp	pecific assay using	the search bar to the right.						
Show 10 V	entries	Moscurement	Description	Jearch:	Using	any key	words	4
1	AChE Binding 1	Quenching of AChE	Description Steady state fluorescence spectra were measured using a Hitachi F-4500 spectrofluorometer. AChE solution concentration was 0.36 µM i O.1 mM PBS buffer solution. Intrinsic fluorescence of AChE was measured by addition of nanoparticles stock solutions of which the final concentration was 90.9 µg/ml. AChE solutions were excited at 280 nm and emission wavelength was set from 300 to 400 nm. Scanning speed was 1200 nm/min. Excitation and emission sit was set to 10.0 and 5.0 nm, respectively. PMT voltage was set to 700 volt. Fluorescence intensities at 340 nm were used for calculating the fluorescence queching effect. All measurements were performed at roo temperature (23°C). We transformed the fluorescence values with and without the nanoparticles were transformed according to the Ster Volmer equation: F/F = 1 + Ksv[Q], where F _e and F are the fluorescence intensities in the absence and presence of the quencher, and K is the dynamic quenching constant.	m m n- sv	Cell cut	ure med	lium	Ŷ
2	AChE Binding 2	Inhibition of AChE activity (%)	The asay buffer was 100 mM PBS, PH=8.0. A stock solution of AChE (100 U/ml) in assay buffer was kept at 0°C. A 1:30 dilution was prepared immediately before starting the measurement. ATCh (10 mM) and DTNB (7 mM) were dissolved inassay buffer and kept at 0°C Stock solution concentration of nanoparticles dissolved in PBS was 1mg/ml. Neostigmine bromide, a known competitive inhibitor of AChI was used as positive control and the concentration of stock solution was 0.1 mM. Into a cuvette containing 880 µi of asay buffer, 50 µi the DTNB solution, 10 µi of an inhibitor solution, and 10 µi of an AChE solution (3.33 U/ml) were added and thoroughly mixed. After incubation for 15 min at 25 °C, the reaction was inhibited by adding 50 µi of ATCh solution. The absorbance were monitored at 412 nm or 5 min. The inhibition rates were calculated using the equation 1(%) = (1-v/v_)×100%, where v _e and v are the rates in the absebce and presence of inhibitor.	E, I of o over I	Negativ culture control: promide	e control medium; Neostig	i: cell ; Posit mine	tive
3	Autophage	Autophage inducing ability (number of the green fluorescent puncta per cell)	Tested in triplicate. The LC3-GFP U87 repoter cells were seeded in confocal dishes and fixed with 4% paraformaldehyde. Laser scanning confocal microscopy was used to acquire fluorescent images of cells. To quantify cell autophagy induction, the number of bright punctua (autophagosomes) was counted in at least 30 cells.	tes o	Negativ culture control:	e control medium; Rapamy	: cell ; Posit /cin	tive
4	Cell Association	Cellular association in A549 cell (Mg, log2 transformed)	Tested in triplicate. For cell association studies, harvested A549 cells were plated onto 24 well plates at ~200000 cells/well and incubate overnight at 37°C to reach ~80% confluence. Nanoparticles were incubated with cells for 4 h at 37°C. Following inclubation, cells in east well were washed four times with sterile PBS supplemented with 0.133 g/l calcium chiorde dihydrate and 0.1% boins esrum albumin ta remove particles that were free in solution and/or not strongly associated with the cell surface. Total cell association (y) was calculated using the following pseudopartition coefficient: y = mcell/(mwell × mcells). Where, mcell is the total atomic golf (or silver) content total massociated with teclis, mwell is the total atomic gold (or silver) content in well (associated with cells and free in solution), and mcells is the total among supplement of the start of the same st	d , , , ne	NaN			
5	Cell Uptake in A549 Cells	Cellular uptake in A549 (1×10 ⁻¹¹ g Au cell ⁻¹)	Tested in triplicate. Nanoparticles (50 µg/ml) were incubated with A549 cells for 24 h. After washing cells three times with phosphate buffered saline, we detached the cells from flask by trypsin-EDTA solution. The cells were counted and then lysed overnight in aqua regi ICP-MS was used to quantify the concentration of nanoparticles.	a. (Cell cul	ure med:	lium	
6	Cell Uptake in A549 Cells 2	Cellular uptake in A549 (1×10 ⁴ nm ² cell ⁻¹)	Tested in triplicate. A549 cells were seeded in 24-well plates at a density of 100 000 cells/well. After 24 h, the cells were washed once w PBS, and the solutions of nanoparticles in cell culture medium (2.5x10 ¹⁴ nm ³ /m) were added. After incubation for 12 h, the samples w washed seven times with PBS to remove extra nanoparticles. Then, the cells were detached by trypsin–EDTA solution (0.25% trypsin, 1 EDTA) and counted. The detached cells were lysed for ICP-MS.	ith ere mM	Cell cul	ure med	lium	
7	Cell Uptake In HEK293 Cells	Cellular uptake in HEK293 (1×10 ⁻¹¹ g Au cell ⁻¹)	Tested in triplicate. Nanoparticles (50 µg/ml) were incubated with HEK293 cells for 24 h. After washing cells three times with phosphate buffered saline, we detached the cells from flask by trypsin-EDTA solution. The cells were counted and then lysed overnight in aqua regi ICP-MS was used to quantify the concentration of nanoparticles.	a. (Cell cul	ure med	lum	
8	Cell Viability	Cell viability (200 µg/ml)	Tested in triplicate. THP-1 (human monocyte) cell lines were cultivated in RPMI 1640 with 10% heat-inactivated fetal bovine serum, 2 m L-glutamine, 100 µg/ml penicillin and 100 U/ml streptomtcin and grown in a humidified incubator a 37%. Cell differentiation into macrophages was triggered by adding Phorbol 12-myristate 13-acetate at a concentration of 50 ng/ml and incubating for 48 h.Differentiated cells were characterized by allowing them to adhere to the plastic well surface in 96 well plates. The nonadherent monocytes were removed, and the adherent macrophages were washed twice in RPMI 1640. Cells were treated with H-MWNT suspensior (50 and 200 µg/ml in complete culture medium. LPS was added to the cultures at a concentration of 100 ng/ml. After 24 h of incubation cell proliferation (WAT-1) assay was used to determine the cell viability.	M IS I, a	Negativ culture control: Lipopol	e control medium; /sacchari	l: Cell ; Posit ide (Ll	tive PS)
9	logP	logP	Tested in triplicate. The experimental logP values of all the nanoparticles were determined using "shaking flask" method. Briefly, nanoparticles were mixed with octanol-saturated water and water-saturated octanol. The mixture was shaken for 24 h. Then, the mixtur was kept still for 3 h to seperate the organic and water phases. The nanoparticles in both phases were quantitatively determined by ICP MS. logP values were then calculated using the following equation: logP = log(Cnp(octanol)/Cnp(water)). Where, Cnp(octanol) is the concentration of nanoparticles in octanol and Cnp(water) is the concentration of nanoparticles in water.	e . 1	NaN			
10	Metabolic Activity of CYP34A	Metabolic activity of CYP3A4 in the liver (%)	The CYP3A4 activity in the HLM-only group was defined as 100%, and that in the ketoconazole group was defined as 0%. The activity of CYP3A4 in functional CNT treated groups was calculated according to the following equation: CNT's effect on CYP3A4 activity = (peak are of NFP in ketoconazole group - peak area of NFP in CNT group)/ (peak area of NFP in ketoconazole group - peak area of NFP in HLM-only group).	ea /	Negativ iver mi Positive ketocor	e control crosome: control: azole	: Hum s (HLM	nan M);
Showing 1 to 1	10 of 25 entries		Pre	vious	1	2 3	N	lext

Figure 9.1.1 Selecting an assay through the Assay database

Record for NanoAID-9	scriptor Data	D Back to Assay List
ViNAS NanoAlD-9 Name: logP Measurement: logP	Activity Oveview for NanoAID-9	
Description: Tested in triplicate. The experimental logP values of all the nanoparticles were determined using "shaking flask" method. Briefly, nanoparticles were mixed with octanol-saturated water and water-saturated octanol. The mixture was shaken for 24 h. Then, the mixture was kept still for 3 h to seperate the organic and water phases. The nanoparticles in both phases were quantitatively determined by ICP-MS. logP values were then calculated using the following equation: logP = log[Cnp(octanol)/Cnp(water)]. Where, Cnp(octanol) is the concentration of nanoparticles in octanol and Cnp(water) is the concentration of nanoparticles in water.	Palladium nanoparticles	
Typical Literature: ACS Nano 2020, 14, 1, 289-302	Result	

Figure 9.1.2 Downloading nanodescriptor data and assay data for NanoAID-9 associated NMs

BO B Artises D	- A 8	B 9 - 01	۵		3 AD9_000	criptors -						ج ۵	2		Adular	• •••• · @	89	2.00	ð C					3 AD0									Q
Home Insert Draw	w Page Lay	out Formulas	Data Review Vie	w 🖓 Tel	i me						ni Share	Comments		fome 1	nsert d	Draw Page	Layout	Formulas	Data	Review	View	🖓 Tell n									19	are C	Comment
Parts of Image	New Roman	n == A . • ▲ • ▲ •	× <u>■</u> == + + +	8- 1 -	General S = % 9	- 11 co	ndtonal Formattin mat as Table + EStyles +	· 通言 近日 日子	ant v ∑ Anta v G rmat v &	Z∀ sarta Xane	- Andres	Brattets			- CH B	ibri (Body) I ∐ =	- 12	• A* A • <u>A</u> • •	E I	1 II 1 I	*••	19 - 23 -	General \$ = %	, 1	• 04		artiste Styles	Delete v	Σ.2	7.0	Analyse Data		6
4 : X - I	fr ENM												• /	4		fx ENM																	
A 1	C	3 G	P. G. H			8 6	M	0		Q	10 E.			A			0	1.		6	- 14			. K.				0 0			5		v
ENM SSSS Real 1	SSSC_Beal SSSS	Real SSSO Real	SSSX Real SSSN Real SSCC	Real SSCN.	Real SSCO_Real 1	ISCX, Real [ISCM, Real] 85	NN_Real SINO_B	Ical SSNX, Real	SNNI Real	\$500 Real \$550	& Real SHOW, Bea	a SXX Real S	887	ENM .	Result																		
CAPEER 0.87042884 4	4.45434347		0 1.8347913 19.327	2614	8 8.82124245	0.123742914							2	CAPOUL	- 4	66																	
6782402 0.85811578 4	4.02359635		0 3.42590052 19.244	2472	8 9	0 16/9536684						• •		GNP002	-4	37																	
639963 0.06471734 0	4.45143342	* *	0 4,3957654 21,489	3876	8.9.82454535	0 197006271	. 0		6			e e		CNPOER	- 4	32																	
CN2664 0.1151644 4	4.2910.4182		0 4.00199575 20.969	2479	# 0.0337626	0 187653771			e e		8 8.0162767	• •		CNP004		03																	
CNP885 0.84343381 4	4.13092681		0.3.00490524 18.519	1217	8 9.82952824	0 15.737652	. 0	* *				• •		ENPOIS	- 3	47																	
CNP888 0.11625261 2	2.12237348		0 1.00419053 9.0725	4414 0.043	HRR3 0.05339054	0 12.796437	0.00234	471 4	0.0111739		8.80004112			CAPOOS		09																	
CNP887 0.00914514 0	0.76843401 0.000	m2784 0.00180432	0 0.95317523 5.9200	0047 8-8238	14163 0.05320642	0.101021668			0.01012003		4 8.0259455			UNPOOR		34																	
CNP888 0.01723444 0	0.62344111		0 2,300427 8,3856	6385 63081	3304 0.83566636	0.103338942			0.00073424		3 8.0180433			UNPOLE	- 3																		
0.0047014 0.0047014 0	0.49048471		0 0.97423217 4.9945	4144 8-3338	0034 0.82747611	0 11 4229182			8.50996475		9 9.012310			0.0000	2	0																	
Cores 0.00550004 0	0.24624507		0 0.42131347 3.9846	8297	0 0.02894022	0.104517862				0.300941178	8 8.0358598			Carbon State		54																	
Copers Esperits a	0.82277542	* *.00185588	0 1.43932300 6.7594		1133 0.05564204	0. 10 9251995					8 81828255			Carble 2		14																	
Contrast	a recession ware	TANK CONTINUE			service of participants	0 9.8445125				e anei / ma	4 engreps			Camport		22																	
Correct Contractor	9.4224263		5 6.44225815 4.4454	And A state	a a second			-						diamon a		11																	
Contest				here cable	teres a sectores			-						Animes		16																	
Chesta Augustinas		-11	a animality a busin	2000 00411	and engenness	a standard								ENDINE		48																	
CORRECT IN DALLARD A		-		Ante parte	and a contained									CAN'S		48																	
CAPELS A CONTRACT	a tassature			1010		0 4 19130911						2 2		CNROLE	1	28																	
COPRES A CLITTERS		-2 -2	a a laternia a tube	7174		0.7.75474743			2 2					CNP019		29																	
Children			a conserve start	1949		0.7.29425247		2						daubetes.		45																	
CAPILI 0	A SHADALL		0.041535430 1.7792	6995 B.0147	1338 9	0.712262828		2 2	2 2				- 21	CNP021		56																	
CORALL A.C.	a httpshall			have states		0.4.73468247								ENN02		26																	
(APRIL)	0.406330073			and make	able Assessed	0.200410734								CNP03		41																	
CAPILA DESIGNATION	a Leasanna		0.015407755 4.5500	1174 0.0764	2971 0 02007171	0. 20104151		2 2						CNP024		36																	
CAPRIS 0.0	a trabater		a containing them	m.73		0.541144019								CAPODS	1	28																	
CAPIES A MATTACK O	144794747		0.017447000 4475	lata sinces	0734 4	a. 5.75434343		2 2					27	ENPOS		11																	
620P822 0.0	A \$7470#15		0.014075155 4.4305	6414	# 0.0070017s	0.5.76408417					a shiperat			CAPO27	4	15																	
COPELS 0.0	0.44214212		0.0.00142000 1.8798	1411 8-00ce	0778 0.01741800	0 6.19214922			0.00070007					CNIPCOB	4	78																	
CNPEPS Approved a	0.48548077		0 0.41143407 4.9412	8228		8.6.34796473								CAPC29	1.1	0.5																	
CAPEIN 0	8.4734736		0 0.01010871 4.8791	5419	8 0.0167619	0.0.2722819							11	6NP030		0.2																	
CNP411 0.1	0.20010514	* *	0 0.33763731 0.8193	6876		0 6.77722184							31	GNP011	-4	12																	
CNPES2 0.80944485	8.4440588		0 0.47001579 4,0092	5819	8 0.0079081	6 5.85180TL)			0		3 6.0106791	2 #	10	6NP032	-1	97																	
CAPE13 0	4.1142244		0 6.77632045 5.7326	0073	8 8.0001737	0.4.99480564					8 8.8335541	2 8	34	CAPOID	-4	47																	
CNPEM BREPRIMST B	0.44993283		0.0.70701178 5.8829	7467	8 9	8 6.32963299							1	ENP094	-4	54																	
CNP435 8.4	0.77258069	8 0.00958202	0 0.00001144 1.002	1935 8.0183	4553 0.62541122	0 7.03088584			0.02493781		8 8.0244454	a		6AP035	4	53																	
d b Sheett 4	6 (C.													6 P	AID9	+																	
Ready									10.01	圖 图 =		+ 100%	-	Ready															10	(M) (2)	-	_	+ 100%
			Na	ano	descr	riptor da	ata																Ass	av o	Jata	a							

Figure 9.1.3 Nanodescriptor data and assay data for NanoAID-9 associated NMs in XLSX format

9.2 Descriptor analysis

After downloading the datasets, users can first analyze the nanodescriptor data of NanoAID-9 associated NMs through the Descriptor toolkit. Two methods (Standard Scaler and MinMax Scaler) are available for harmonizing nanodescriptor values. Users can upload the descriptor dataset through the Descriptor Upload module. After selecting the method and submitting for analysis, user can obtain PCA result and a descriptor standardization dataset (**Figure 9.2.1**).

PCA applied to the descriptor data identifies the combination of attributes (principal components, or directions in the descriptors space) that account for the most variance in the descriptor data. Based on the PCA results, both the 2D and 3D chemical spaces of NMs in the

dataset is visualized, which can be used to analyze their structure diversity (**Figure 9.2.2**). Descriptor standardization is a technique often applied as part of descriptor preparation for machine learning. The goal of standardization is to change the values of numeric columns in the dataset to a common scale, without distorting differences in the ranges of values.

Figure 9.2.1 Descriptor analysis through the Descriptor Upload module

9.3 Machine learning modeling

The Model toolkit allows users to predict NM properties and bioactivity using predeveloped models or by developing their own ML models through parameter tuning. In this case study, we will develop a LR model using the assay data and descriptor data of NMs associated with NanoAID-9 through the AutoNanoML module. In the LR page of AutoNanoML, users can develop customized LR models by three steps: (1) uploading descriptor dataset and assay dataset in XLSX format, (2) selecting a method for descriptor standardization, and (3) selecting a method for the cross-validation procedure (**Figure 9.3.1**). After clicking on the "Submit for Modeling" button, the process of model development is automated and streamlined for the user, and the resulting models and corresponding prediction results are available for browsing and downloading (**Figure 9.3.2**). The development of a PLSR model is similar to that of an LR model. Users can explore the PLSR page of AutoNanoML for PLSR modeling.

Figure 9.3.1 Machine learning modeling through the AutoNanoML module

Figure 9.3.2 The developed model using the nanodescriptor data and assay data of NanoAID-9 associated NMs

9.4 Prediction new nanomaterials using the developed model

In section 9.1-9.3, we introduced a case to develop a LR model using the NMs associated with NanoAID-9. The subsequent step involves utilizing the developed model to predict the logP values of new NMs. Users need to create a nanodescriptor dataset of new NMs in XLSX format for this purpose. There are several ways to obtain specific NMs' nanodescriptor data for prediction. A regular approach is to explore and retrieve data from the Structure database. Moreover, as described in section 7, users can also request a nanodescriptor calculation service

through the Calculation Service interface by providing basic structure information about the new NMs.

In this tutorial, we will focus on GNPs in the Structure database, since the LR model is developed using GNPs. After clicking on "Gold Nanoparticles" on the primary navigation page of the Structure database, users will be directed to the secondary navigation page for GNPs, where a total of 414 GNPs nanodescriptor data can be batch downloaded in XLSX format (**Figure 9.4.1 and 9.4.2**). In section 9.1-9.3, we use the nanodescriptor dataset and assay dataset of 123 GNPs for modeling, while the other 291 GNPs possess nanodescriptor data but lack assay data of NanoAID-9 (**Figure 9.4.3**). The nanodescriptor data for all 414 GNPs can be obtained from the secondary navigation page by clicking on 'Descriptor batch download' (**Figure 9.4.2**). Subsequently, we will use the nanodescriptor data from the GNPs without NanoAID-9 results to create a prediction dataset in XLSX format.

The nanodescriptor dataset for predicting new NMs will be uploaded to the developed LR model on the LR page, as mentioned in section 9.3 (**Figure 9.4.4**). After clicking the 'Submit for Prediction' button, the model will perform the prediction, and the prediction results can be downloaded and analyzed from the interface (**Figure 9.4.5**).

Figure 9.4.1 Selecting specific nanomaterial type from the primary navigation page of the Structure database

Records for Gold nanoparticles											
Displaying 414 nanomaterial records for Gold nanoparticles. Click on ViNAS-ID to be taken to that nanomaterial record page.											
B PDB batch download											
Show 10 v entries					5	Search					
	name									^	
GNP001											
GNP002											
GNP003											
GNP004											
GNP005											
GNP006											
GNP007											
GNP008											
GNP009											
GNP010											
Showing 1 to 10 of 414 entries		Previous	1	2	3	4	5		42	Next	

Figure 9.4.2 Batch download of GNPs nanodescriptor data from the secondary navigation page of the Structure database

nsert Draw Page Layout Formulas I	Data Review View Q Tell me	prives		ut Share C Comments	Home Inc.	ert Draw Page La	yout Formulas	Data Review View 🖓	Tell me	inger i can			ef that	
Times New Roman → 11 → A' A' III / U + □ + △ + △ +	Image: Image	v III Conditional Formating v III Format as Table v III III III Conditional Formation	Bit transf * ∑ * Ary 200 belate * ∑ * ZY* 300 formal * ∅ * filter	C * C * C * C * C * C * C * C * C * C *	Q. 4.	Times New Roman	• = • A' A' • • • •		ti • General ⊡ • \$ • % 9	1 Condition		Se belefe = Σ = A Se Delefe = Ω = Z Format = Q = Table	- O - Analyza Select Data	I I
× ✓ fr ENM					A1 1	× - 6 IM								
8 C D E	CONTRACTOR DE LA CONTRACT	K L M N	0	8 5 F F			* ×	1 6 1 6		× + -	N N	0 1 0		
SSSS Real SSSC Real SSSN Real SSSO Real SSSS	Real MMM_Real MCC_Real MICN_Real MCO_Real MCC	X. Read SSCM, Read SSNN, Read SSND, Read SS	NK Real SSNM Real SSOO Real SS	OX_Real_SSOM_Real_SSXX_Real_SS	1 (8554	SSSS Real SSSC Real SS	N Reaf SSND Reaf SN	NX Beat SSSM Beat SSCC Beat S	SCN Real SNCO Real ST	SCX Real SSCM Real SS	N Rol SSNO Rol S	X Rot SIM Rot SHOD Roll	NOX Real SSON Real	of sext -
0.07982884 4.4555507 0 0	0 1.8347815 19.1273414 0 6.82129255	0 13.1742934 0 0	a) a) a)	* * *	2 GAPIES	8.8(440978 B.8714108	0. 0.	# 0.79792122 #.#1763523 4	01410488 0.35858265	0.5.94243201	4 4	* * *	0.0.31130067	12
0.05411178 4.02350635 0 0	0 3.42590032 19.2442472 0 0	0 169536688 2 0			1 GhPlas	8.61334202 0.55542341	4 4	il GANDENARD S.SORCEBER O	01743262 8.000WWM	0.3.78733307	0.000055243		8 8	*
0.04471714 4.41143341 0 0	0 4.3457614 31.4893076 0 0.60464533	0 19.7066271 0 0			4 GNP166	8.01700144 0.83006460	4 4	8 1.0673334 3.87779313	0 0.01747978	0 1.68190822			0 0.011993330	39.
8.1153844 4.29(14183 8 8	8 4.10199515 20.9092459 0 0.0357026	0 14.7653771 0 0		8 8.91427679 8	3 GNP147	8.00424011 0.58544427	 a 	8 0.77472976 6.07785a06	0.0.0227734	0 144672435			0.0.01774726	26
A CONTRACT A CONTRACT OF A	a tabaiant patrials postant periods	IN 12 THATT IS A MADUARTY	a	a anticontra a	6 GNP168	8.02044312 0.68862519	0 0	8 0.71830455 3.33872499	8 0.01101299	0 5.28283856				4
0.00018716 0.78847801 0.00007784 0.00186912	# # #\$\$777823 5.82988187 8.82384183 8.85028442	0 10.1071880 0 0	+ 0.01412445 #	# 0.07196555 Ø	7 GNP148	8.66564936 0.12350767	4 6	0 0.88180733 3.77584476	8.0.85321643	0 5.48050437				4
0.01723444 0.42544311 8 0	0 1,300927 8,56566388 8,00811304 8,00060636	0 10.5338942 0 0	0.00073424 0	8 0.01804321 0	a Gaptita	0.0489624 0.92541645	0.002712572	0.031677821 5.40114793	8 6.54547992	0 6.83055994			0 8.82748214	
0.00647010 0.00048471 0 0	0 0.97423217 0.99414168 0.02385000 0.02767811	0 11.4224182 0 0	8 0.00994479 8	# #.#122109 0	9 GNP115	8.06089778 3.0351458		0 1.15496368 4.34415403	0 0.0127365	0.6.34858922				ð
0.00750204 0.29629507 0 0	0 0.42151347 5.98464247 0 0.42894322	0 19.4517842 0 0	8 8.00090175	0 0.02507067 B	10 659172	0.0623016 1.00970805		0 0.9561203 4.77152173		0 5,73220094				s
6.8009726 0.82277562 0 0.00105588	# 1.45552308 6.75545555 8.00007133 8.05564204	0 13.8257395 0 0		# 0.02828551 0	11 GNPETS	0.04028812 0.78133047		0 0.04340773 4.83430901	0.033746762	0 3.738%69%6			0 0.01708133	0
0.01067468 0.70745295 0.00077634 0.00151380	0 0.89259699 1.70489858 0.0304665 0.04233965	0 9.6685125 0 0.00101895	0 0.0157597 0.00032994	0 0.02172539 0	12 GMP114	0.04102405 0.71581006		0 0.77794829 4.15886459 0	101548761 0	0 4.94535118				s
0.01763674 0.4224263 0 0	0 0.48221815 4.48541118 0 0.04369121	0 4.18799351 0 0			13 6399178	0.00471394 0.64200968		0 0.72688339 3.56789174		0 1.0619833				s
0.012016 0.45421096 0 0	0 0.7331373 4.17447833 0.00991757 0.60877629	0 5.24433396 0 0			14 6599176	0.0144205 0.45841528		0 0.70310041 4.38874969 0	00941199 0.04322075	0.5.84125555				<u></u>
0 0.72679811 0 0	0 9.43269121 4.00182548 0.02272123 0.0221133	0 5.909837 0 0		0 0.03924431 0	15 659177	0.04902507 0.80410775		# 1.09798142 1.88666877	0.0.00443325	0 5.94551476			0.0041790	<u> </u>
0.03912589 0.62545851 0 0	0 0.92501612 4.21050182 0 0.00640911	0 3.14494345 0 0			In Convers	0.00002800 0.0140242		0 0.04420907 3.7942343	0 0.0000000C	0.5.65892268			0 0.01100151	<u> </u>
0.04120913 0.82543128 0 0.01349703	0 0.62172208 5.20324036 0.01750176 0.13626785	0 5.80319305 0 0	0 0.01188246 8	0.01571412 0	17 659479	0.0299885 0.51328853	0.00043013	0.00079739 3.7018473	e estestist	0.537930452		0 0.00106218	0 0.01130240	
0.02067791 0.09869777 0 0	0 0.00173200 0.31002001 0 0	0 6.11130611 0 0			11 1259-188	0.008842 0.73998995		# 0.4766390# 3.43499432	# 0.37116455	0 5.12215524				ð
0.01173009 0.87212754 0 0	0 0 14302218 5.11151329 0 0	0 7,29438245 0 0			10 639-000	0.0751185 0.7783064		0 0.16301879 4.08254307	0 0.02170042	0 5.09944383				<u>.</u>
0.00000000 0.00000000	B BATTABARTI A TRANSFORM D B BATTATA	0 1.50000101 0 0		8 9.9293204 0	10 600 000	Enderstand a line land		· 1.0753500 5.5588500	0 0.0014020	0 / Interior			0 0.00730913	<u> </u>
		a c Transfert a a			to contrast	and the state of the second		a i beeners a bileters		0 0.0000000			0.000000723	<u>.</u>
A A 49911971 A A	a starting stilling submits assault	a toppidte a a		a annuarta a	11 CORPORT	LANDAULA O BALLADIA		a patritic collector	0.0.03000017	0 4 34433714				-
D.DIAINDAI D.SADDARAS. D. D.	# # FE483731 # \$3003138 # #3062933 # #0007727	0 7.0106781 0 0		8 0.00915321 0	he Chillens	samples a burbers		a checking hardened a	CONTRACT AUTOMATIC	0.517147761			0.00000000	2
0 0.53824307 0 0	0 0.3549808 3.84509675 0 0	0 3.45146029 0 0			in Gapter	0.0761364 0.49645559		a o heavened habertoon a	ANNERST ANTIATAL	0.54785001		a neriesary a	0.0011000	2
0.00179052 0.64795262 0 0	0 0.57842008 4.8253434 0.00983731 0	0 5,220393402 0 0			26 GNP100	0.00117877 0.94964731	8 8.00123471	@ 0.02799775 5.87413054 @	OPPETANT OUTPETALER	O SAUGURE			0.0.00411500	2
0 0.52679855 0 0	6 0.54075338 4.49065918 0 0.00798376	0 5.76668412 0 0		0.000992837 D	27 GAPTER	0.05260131 1.12424293		0 0.88206916 4.99018764 0	LOORER721 0.02186468	0 5.92231624			0.0.00708147	42
0 0.48236252 0 0	0 0.40362608 3.87981655 0.00640778 0.00741803	0 5.19216922 0 0	0 0.00870087 0	0.01705883 Ú	22 GhP100	0.00013279 0.94652967		0.0.78045496 8.47294173	0 0.33541308	0 5.76453513			0 0.00971921	ñ.
0.00976543 0.48544877 0 0	0 0.45583407 4.98558119 0 0	0 6.34796473 0 0			29 G3P199	0.01967745 0.86041311		0 0.80800518 a.54834715	0 0.34564879	0 5.5946.5576				*
8 6.4766756 8 8	8 8.65054875 4.85911819 B 0.0347879	0 4.2722419 8 9			30 GNP192	8.84542945 0.72652507	a a	0.0.75494498 4.03893885	8 0.00728066	0 4.95868005			8 8	
0 0.25515514 0 0	0 0.33762731 0.81916873 0 0	0 8.77722166 0 0			II GNP199	8.01332106 0.56786043		0. 0.4409248 3.11164223		0 4.9026824			1 1	-
0.00044431 0.4440488 0 0	0 0.47009579 4.00923019 0 0.0075081	0 5.85180713 0 0		8 0.01067912 0	12 GNP104	0.07382961	0 0.0942727	0 0.27002712 0.24332198 0	01299838 2.39497558	0 2.14798442	0.001812177	0.040429758 0.72198809	0 3.32714151	35
0 0.3192264 0 0	0 0.77632045 5.73269073 0 0.0601737	0 6.95680968 0 0		0 0.02351412 0	13 GNP198	0 0.62978412	4 4	0 0.81310992 5.81471882		0 11.5245445				
0.01993457 0.44993203 0 0	0 0.7070317K 3.08297463 0 0	0 4.31943244 0 0			34 GNP296	0.00634185 0.23272319 0.0	0962442 0.02062401	0 0.54878972 1.94851565 0	49521548 0.3372(07)	0 5.47536777 8.8	1124946 8/01720879	0 0.31387278 0.06129513	0.0.89120475	15
0 0.77230005 0 0.00434292	0 0.00003344 3.4837933 0.01830333 0.02681122	0 140000046 0 0	0.02493781 0	8 8.02+++++2 0	And Alexandre									
heatt +					4 . 6	+								
			- 10 M	+ 100%	Roody							100 10	[7]	_
												Party of		
1 1	A		1 . P					1						
Nano	descriptor data of 12	23 GNPs for more	delina		N	anodesci	rintor da	ita of 291 G	iNPs for	nredicti	on usina	1 the devel	nned m	100
- Carro	accompter duta of h									p. ouiou	o aom	,	-pu	

A total of 414 GNPs nanodescriptor data on ViNAS

Figure 9.4.3 GNPs nanodescriptor data used for machine learning modeling and prediction

Linear regression	Model Results	
Introduction 1. Linear regression (LR) attempts to model the relationship between two variables by fitting a linear equation to the observed data. One variable is considered to be an explanatory variable, and the other is considered to be a dependent variable. 2. A linear resources/in the bas as explain of the first Y = a h Y, where Y is the explanatory variable and	The descriptor was normalized using the Standard Scaler method. Then, an LR model was built for the modeling set and validated using a 3-fold cross-validation procedure. The resulting model had an R ² value of 0.6444 and a root mean squared error (RMSE) value of 0.652.	
V is the dependent variable. The slope of the line is b, and a is the intercept. On VINAS, the LR algorithms is implemented using sckit-learn 0.24.1.	Best LR model from cross validation procedure	
Select descriptor and endpoint datasets Descriptor dataset (XLSX) Choose File No file chosen	9	
Download File Example Choose File No file chosen Download File Example	1 00000 00000 00000 00000 00000 00000 0000	
2. Descriptor Standardization Method Selection Scaler method V	-3 -2 -1 0 1 2 3 Gaves	2€1 (volte€∽) β Β Β -0.05- βλατοφορία 0.0*
3. Cross-validation Method Selection CV method ~		Name North Date North Date </td
4. Modeling 1 Submit for Modeling	1. Hodel Data A Download Developed Hodel A Download Scatter Plet Data	
	Descriptor Contribution in Developed Model Descriptor Contribution Data Descriptor Contribution Chart	
	Hodel Deployment for Prediction Goose Fab. GRYPortPrediction.xix. South for Prediction	
	i	
		Image Image <td< td=""></td<>

Nanodescriptor data for prediction

Figure 9.4.4 Uploading the nanodescriptor dataset of new nanomaterials for prediction

Figure 9.4.5 Downloading the prediction results from the AutoNanoML interface

10. Contact Us

We appreciate user feedback on ViNAS-Pro and aim to respond to all inquiries. Users can reach us by email at <u>vinas.zhulab@gmail.com</u>. We will continuously upgrade ViNAS-Pro to better serve the community.

11. About

The Zhu Lab uses cheminformatics algorithms, workflows, and other relevant computational tools to model chemical toxicity, ADME (Absorption, Distribution, Metabolism, and Excretion), and other biological activities. The resulting models will be used in the regulatory chemical toxicity assessments and the CADD (Computer-Aided Drug Discovery) process. To learn more about our lab, please visit our website at <u>https://www.zhuhlab.com/</u>.

2023.12.29 Version

